

## **Optics for Einstein Telescope**

Prof Stefan Hild, University of Maastricht & Nikhef

www.einsteintelescope.nl / www.etpathfinder.eu

Einstein Telescope NGF workshop: Optics. 28.2.2024, Utrecht

# A **new** window to the Universe

- Seeing dark objects otherwise not accessible with "normal" astronomy.
- Shedding light on the components of the Universe (dark matter, dark energy).
- Better understanding of Gravity, the least understood force.





#### How to build a gravitational wave detector?

- In order to detect GW you need to very accurately measure the position of test masses.
- First you need to make your test masses quieter than what you want to measure.
- Secondly, you need to readout out the strain to the required precision without (!) introducing 'too much' additional noise.





#### Using Light as our yardstick





## Large laser interferometers for measuring tiny changes

Optimal Arm length:

$$L=rac{\lambda_g}{4}$$
 GW wavelength

Example: GW signal at 100 Hz => optimal arm length of 750 km





## How to make your interferometer arms long?

#### **Heriott Delay Line**





VS.

#### **Fabry Perot Resonantors**





#### ALIGO Example





#### State of the Art



- Ultra-stable laser (1064nm, Linewidth <1Hz)</li>
- High power optics: ~400kW CW
- Optical resonantors (km length, high finesse)
- Fused silica substrates, available in ET size (200kg), Largest optic used by LIGO/Virgo: Virgo BS with 55cm diameter.
- Mirrors polished to nm flatness and 100pm microroughness
- Special low Brownian noise coatings
- Low absorption (<0.5ppm per coating; <0.25ppm/cm in substrates)
- Controlling positions of mirrors to pm accuracy



## Needs for Einstein Telescope

- While High Frequcency are based on mostly available technology, the ET low frequency interferometers pose a variety of challenges.
- Want to operate cryogenic interferometers, i.e. 4 main test masses are cryogenic, rest of the optics can be standard room temeprature.
- Fused silica shows increased noise at cryogenic temperatures and is therefore ruled out.
- Current ET-LF baseline envisages silicon mirrors:
  - 45 cm diameter and 55cm thickness
  - Low optical absorption; electric resistivity >10kOhm\*cm



## Example towards ET: ETpathfinder mirrors

- Small Optics: 15cm diameter, 8cm thickness.
- Specially produced Float zone silicon ingots made by Institut for Crystal Growth in Berlin
- High precision polishing (1nm flatness for inner 4 cm diameter, 100pm roughn ess) on 4 surfaces per mirror.





#### 11 Wedge

A horizontal wedge of  $0.007^{\circ+0.002^{\circ}}_{-0.00^{\circ}}$  (122urad^{+35urad}\_{-0urad}) shall be added to the substrates.

#### 12 Radius of curvature

Refer to the sketch in Figure  $\underline{[1]}$  below for an exaggerated visual representation of S1 and S2 ROC.

Surface 1: The ROC of S1 shall be spherical, concave. ROC:  $14.5 \text{ m} \pm 0.1 \text{ m}$ . Surface 2: The ROC of S2 shall be spherical, convex. ROC:  $9 \text{ m} \pm 0.1 \text{ m}$ .







#### Thanks for your attention! Questions?



