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Exploring the dark side of the Universe

e By detecting space-time vibrations on Earth, we-can measure dark
cosmic objects, such as black holes

e 100 years from prediction to first detection: 2017 Nobel Prize

« New window to the Universe and fundamental physics: discovery space!
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LIGO, the first detection, 2015

After several decades of
preparation we (LIGO) recorded
the first direct detection of a

gravitational wave on:
14th of September 2015, at
09:50:45 UTC

2017 Nobel
Prize in Physics
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Future: Einstein Telescope

Planned Einstein Telescope

Large laboratories and three 10 km long tunnels, more than 200m

| underground.
LIGO, Hanford, WA 10 times better than design sensitivity of current detectors, providing
GW data for astronomy and fundamental physics for at least 50 years.
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A leap into the past

Farthest galaxy Newly-identified
confirmed to date farthest galaxy candidate
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Einstein Telescope: from idea to project

2000 ESF exploratoryworkshop in Perugia on 3G GW detectors

/
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ILIAS (FP6)
- Networkingactivity

of future GW

1010 ELITES (FP7) Project
(KAGRA-ET synergies)

: R&D\

ET conceptual
design study (FP7)

-‘

Conceptual design

Project Organisation

[Timeline: Michele Punturo]

ESFRI status Scientific Collaboration
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Success factor, so far

e ET Collaboration:
o (Officially established 09.06.2022

® 1559 members, 222 institutions, 24 countries and 84 research units
 Project funding:

e Large amounts of funding for preparing bids to host ET, for example 50M€ ETIC
project (Italy), 42M€ National Growth Fund (Netherlands)

e EU funded preparation phase project ‘ET-PP’, total value 12M€

e |nternational coordination:
o Established the ET Organisation to lead the international partnership

e Active international group of ministry delegates meets regularly
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Possible
ET sites

® Madrid
.Lisbon o

®Athens

e Currently there are two candidate sites in Europe to host ET:
e The Sardinia site, close to the Sos Enattos mine
e The Euregio Meuse-Rhine (EMR) site, close to the NL-B-D border
o Athird option in Saxony (Germany) is under discussion, but not yet a candidate.

[https://www.interregemr.eu/]
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Nikhef, broad R+D Programme for essential technologies

e
e,@(‘\grom Virgo towards ET

Vibration isolation for cryogenic mirrors in ETpathfinder
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Advanced interferometry
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What Makes it Better?

o GW effect scales with arm length: large
detectors

o Optical signal scales with light power:

High Power Amplifier

Master Laser

Andreas Freise, 27.03.2024

_Km_ high-power laser, optical cavities
o B e | aser beam fluctuations make noise:
. filter cavities

o Stop everything from
shaking!
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Virgo: seismic isolation
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Transfer Function

Need more than a 10 orders of magnitude attenuation above 10 Hz

Use combination of active pre-isolation stage (inertial free platform balancing on inverted pendulum,
using accelerometers and position sensors) and passive multi-stage pendulums and blade springs

Mirrors are suspended by 4 glass fibers for thermal noise: need materials with low mechanical
losses
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Thermal deformation

e Very high power laser beam hits all the optical
elements of the whole interferometer.

e Some watts of power are dissipated and absorbed
in the optical elements, resulting in temperature
gradients.

e The temperature gradients result in refractive
index gradients and geometrical alteration of the
elements.

e The optical properties of the elements are affected.

e Asystem able to compensate the thermal
deformations is needed to guarantee the proper
working of the interferometer.

Andreas Freise, 27.03.2024
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Mitigating emerging defects

Example change in temperature
a = 100%, diameter = 100pum
Then AT = 800K

[G. Billingsley et al.]

o Point-like defect (< 100um), highly absorbing (> 1TE4 ppm), on test mass HR surface



Virgo thermal compensation system (TCS) ﬁ?;%
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Ring heater actuator

Compensation » Absorbed light in input
plate : :
mirror heats mirror and

changes RoC

————————

- N\
L d

~

p
'-H|l F * (Heated) compensation plate
| necessary to correct for this
effect
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CO2 projector actuator
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Hartman wavefront sensor
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Phase camera sensor

/ GW detector
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TCS, the unexpected challenge

 The effect of thermal deformation (together with other optical defects) limit the
performance of current detectors Virgo and LIGO. Thermal compensation systems
have been added as a work-arounds to the original designs.

 The coupling from various sensing and control system make inference of the true
interferometer state very challenging.

o Existing thermal compensation systems do not allow to increase the power of the main
laser any further.

e However, the Einstein Telescope has much more stringent noise requirements and
needs more laser power!

Andreas Freise, 27.03.2024 NiBI\ ef VU ﬁf 28



Einstein Telescope
conceptual design

Parameter ET-HF ET-LF

Arm length 10 km 10 km

Input power (after IMC) S00 W 3W

Arm power 3 MW 18 kW
Temperature 290K 10-20 K

Mirror material fused silica silicon

Mirror diameter / thickness | 62cm/30cm 45 cm/ 57 cm
Mirror masses 200kg 211kg

Laser wavelength 1064 nm 1550 nm
SR-phase (rad) tuned (0.0) detuned (0.6)

SR transmittance 10 % 20 %

Quantum noise suppression  freq. dep. squeez. {req. dep. squeez.
Filter cavities 1%X300m 2x1.0km
Squeezing level 10dB (effective) 10dB (effective)
Beam shape TEM()() TEM()()

Beam radius 12.0cm 9cm

Scatter loss per surface 37 ppm 37 ppm

Seismic 1solation SA, 8 m tall mod SA, 17 m tall
Seismic (for f > 1Hz) 5-10719m/ f? 5-1071%m/ f?

Gravity gradient subtraction none

X

:%_‘j ﬁ'" 1064 nm beam

e | 550 nm beam

[] fused silica optics

[] silicon optics

factor of a few

Andreas Freise, 27.03.2024
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Better sensors, new actuators

e Better actuators: The main optics of the ET-LF interferometer are in a cryogenic
environment. Existing actuators use heating for compensation. What can we do in
ET-LF (without touching any mirror)? ET-HF will have similar optics as Virgo and

LIGO but much higher laser power. Better actuators are required to compensate
the larger distortions.

e Better sensors: ET-LF and ET-HF have at least a factor of 10 stricter noice

requirements, so sensor noise of wavefront sensors and other TCS systems must
be significantly improved.

Andreas Freise, 27.03.2024 N i% ef VU %{



Updating detector technology piece by piece...
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https://gwic.ligo.org/3Gsubcomm/documents/GWIC_3G_R_D_Subcommittee_report_july_2019.pdf
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IS not enough. We build a complex machine.
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Better inference: key challenge is the operating point

To detect GWs the detector length degrees of freedom
must be locked at its operating point:

 Resisting environmental effects, maintaining
sensitivity

e Butalso, critically, the operating point depends on

the detailed phase relations of higher-order optical
modes in the interferometer

All interferometer behaviours change rapidly when
offsets are introduced ¢ o

Laser
PRM POP

o All optical imperfections affect error signals - so
offsets are often produced

e Those offsets also distort the readouts for thermal
compensation control

Andreas Freise, 27.03.2024
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Position sensing and control

® Quadrant photodiode

Lv+ Lw

In 4+ lw
S— PRCL = 1'/» +
. Vas / .
: ‘ , IN +1n
IMC : SRCL = /g + :
E N\ 1 & a i . —H_#]—B B7
“ssscffessccnccsssannnsn | . - } . ’1‘
IMC Refl e i
— 22 MHz '
Y
stabllization P

(ay

d Photodiode DARM = Ly — L w (differential arm length)
erage arm length)

MICH = [y — Iy (differential Michelson short arm length)

(power recycling cavity length)

(signal recycling cavity length)

- Interferometer is only sensitive when all cavities are on resonance / at dark fringe: use real-time

system to control many degrees-of-freedom.

» Error signals obtained mostly using RF-modulation schemes: modulate laser beam with Electro-Optic
Modulators, demodulate photodiode/quadrant signals (similar to lock-in amplifiers).

Actuate on mirrors using voice-coil actuators and electro-static actuation.

Similar control loops for angular degrees of freedom.

Andreas Freise, 27.03.2024
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The subtle art of optomechanics
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Phase [rad]

Main interferometers signal as probe

The ‘DARM TF' is the detector response function, and often our most sensitive probe for detector
performance overall.

Common feature: Optical spring in DARM TF is distorted by many defects - in experiment & simulations

— we want to understand exactly the dynamic response of a radiation-pressure dominated opto-
mechanical object made of 7 complex systems distributed over 10km lengths.
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https://tds.virgo-gw.eu/ql/?c=18447
https://tds.virgo-gw.eu/ql/?c=18384
https://tds.virgo-gw.eu/ql/?c=17928

Nikhef, synergies in instrument development

Virgo: large-scale detector in Italy, able to detect GWs,
currently operating and/or being upgraded.

ETpathfinder: 10m scale prototype interferometer, a
testbed for future GW technologies, currently under
construction.

Einstein Telescope: plan for future observatory in
Europe, currently design, site selection, research
and technology development.
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Summary

o Gravitational wave detectors are currently limited by the effects from thermally
deformed optics.

o Key challenges are the actuation for the cryogenic mirrors in ET-LF and for the very
high power systems in ET-HF.

o Better wave front sensors are required to meet the more stringent noise
requirements of ET (compared to current systems).

o Avery good understanding of the strongly coupled detectors as a whole is required
for better inference and control strategies.
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