Crystalline silicon mirrors Substrate and Coating Requirements

J. Steinlechner 28th Feb 2024

Silicon Substrates

- mass: ~ 200kg \rightarrow motivated by IFO noise reduction
- diameter: $50 \text{cm} \rightarrow \text{motivated by coating thermal noise reduction};$
 - larger beam diameter reduces coating thermal noise;
 - even if we had extremely good coatings: minimum mirror diameter, due to laser beam propagation in long ET arms: 35 - 40 cm
- \rightarrow Very large silicon blocks are required.
- requires very low mechanical loss (high Q-factor)
 - o uncritical for monocrystalline material
- requires very low optical absorption at 1550nm/2000nm

data from Jena; published as 1/Q in [link]

Silicon: Absorption

- Float zone silicon (undoped):
 - Very pure optical absorption can be as low as few ppm/cm 🔽
 - Drawback: maximum diameter ~20cm X
- Czochralski silicon:
 - Diameter up to 45cm (larger in principle possible)
 - \circ Significant impurities, absorption of several thousand ppm/cm or more imes
- Magnetically purified Czochralski silicon:
 - \circ Can have low absorption similar to float zone material \swarrow
 - Can in principle be produced with same diameter as standard Czochralski?
 - \circ Large substrates currently not available imes
- Directional solidification
 - Very large diameter/mass available 🔽
 - Significant impurities X

Other considerations:

- Composite test masses?
- Different ITM/ETM material (at different mirror size)?

Absorption requirement: 'not as good as FZ, but much better than standard Czochralski'

Silicon: Birefringence and other properties

- growth, suspension and heat treatment (required for coating optimisation) lead to internal stresses such as birefringence
- heat treatment: activation of free carriers
 → absorption increase
- surface absorption:
 can arise from polishing
- also important: thermal expansion coefficient, homogeneous refractive index, ...

C. Krueger et al. [link]

Coatings

- high reflectivity (at 1550nm)
 - \circ ETM \rightarrow 99.9995%
 - \circ ITM \rightarrow 99.9%
- ~40 layers or more for ETMs (depending on refractive index contrast)
- total optical absorption of ~1ppm

Coatings: Further requirements

Coating Options and Materials

- Current coatings made of SiO_2/Ta_2O_5
 - mechanical loss increases at low temperatures planned for ET-LF
 - usually heat treated to ~500°C to minimize absorption and mechanical loss
- Of interest at 1550nm and low temperature:
 - \circ a-Si absorption reduction required
 - \circ ~ SiN combination with a-Si being explored
 - SiO₂:HfO₂ early development phase
 - TiO₂ crystallizes easily during heat treatment
 - o ...

• Other coating concepts

- monocrystalline multilayers (e.g. <u>AlGaAs</u>)
- crystalline/amorphous hybrid coatings (e.g. crystalline toplayer)
- o dombination of more than two materials in a multilayer stack (<u>Multimaterial coatings</u>)
- <u>nanolayers</u> (to suppress crystallisation)
- \circ ion implantation of reflective layers

0 ...

What the ET Coatings Community can do

Measurements of:

- > Optical absorption
 - usually on fused silca substrates, 1" in diameter
- Mechanical loss
 - Room temperature: usually on fused silica substrates,
 2 or 3" in diameter, 1mm thick
 - Cryogenics: silicon or sapphire samples,
 2" in diameter, between 1 and 5mm thick
- Spectrophotometry: refractive index and thickness needed to analyse mechanical loss and absorption
- Various cycles of heat treatments

 \rightarrow characterisation of samples can take weeks to months (depending on what we want to know/optimise)

